A Super-Soliton Hierarchy and Its Super-Hamiltonian Structure

Zhu Li · Huanhe Dong · Hongwei Yang

Received: 15 January 2009 / Accepted: 23 March 2009 / Published online: 1 April 2009 © Springer Science+Business Media, LLC 2009

Abstract A super-soliton hierarchy and its super-Hamiltonian structure is obtained respectively based on Lie super-algebra and associated super-trace identity.

Keywords Lie superalgebra · Supertrace identity · Superintegrable system · Super-Hamiltonian structure

1 Introduction

A simple and efficient method to obtain continuous or discrete integrable systems was proposed by Gui-zhang Tu in [1, 2]. Wen-xiu Ma further developed it and called it Tu model [3]. By taking advantage of it a family of integrable systems associated with physics backgrounds have been obtained, such as AKNS hierarchy, KN hierarchy, BPT hierarchy, etc. in [1–12]. With the development of soliton theory, recently, Wen-xiu Ma proposed a method to obtain super-integrable system in [13]. The main ideas are as follows:

Let \mathcal{A} be a commutative superalgebra over R or C, and G a matrix loop superalgebra over \mathcal{A} with the nondegenerate Killing form. Based on G we consider the following isospectral problems

$$\varphi_x = U\varphi = U(u, \lambda), \qquad \varphi_t = V\varphi, \qquad \lambda_t = 0,$$
 (1)

where $u = (u_1, u_2, ..., u_q)^T \in \mathcal{A}^q$ is a potential consisting of commuting and anticommuting variables, λ is a spectral parameter.

The compatibility of (1) is the zero curvature equation

$$U_t - V_x + [U, V] = 0, (2)$$

where [U, V] = UV - VU.

Z. Li (🖂)

H. Dong · H. Yang

College of Information Science and Engineering, Shandong University of Science and Technology, Qingdao, 266510, China

College of Mathematics and Information Science, Xinyang Normal University, Xinyang, 464000, China e-mail: lizhu1813@163.com

If a equation

$$u_t = K(u) \tag{3}$$

can be work out through (2), we call (3) is a super-evolution equation,

If there is a super-Hamiltonian operator J and a functional \mathcal{H} such that

$$u_t = K(u) = J \frac{\delta H}{\delta u},\tag{4}$$

then (3) is called a super-Hamiltonian equation. If so, we say that (3) has a super-Hamiltonian structure.

2 The Super-Soliton Hierarchy

We first construct the following Lie superalgebra G

$$\begin{cases} e_1 = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, & e_2 = \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, & e_3 = \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \\ e_4 = \frac{1}{2} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}, & e_5 = \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, & [e_1, e_2] = e_3, & [e_1, e_3] = e_2, \\ [e_3, e_2] = e_1, & [e_1, e_4] = [e_2, e_5] = [e_3, e_5] = \frac{e_4}{2}, & [e_5, e_1] = [e_2, e_4] = [e_4, e_3] = \frac{e_5}{2}, \\ [e_4, e_5]_+ = [e_5, e_4]_+ = \frac{e_1}{2}, & [e_4, e_4]_+ = -\frac{e_2 + e_3}{2}, & [e_5, e_5]_+ = \frac{e_2 - e_3}{2}, \end{cases}$$

where e_1, e_2, e_3 , are even and e_4, e_5 are odd, and $[\cdot, \cdot]$ and $[\cdot, \cdot]_+$ denote the commutator and the anticommutator. The corresponding loop superalgebra \tilde{G} is given as follows

$$\begin{aligned} e_{1} &= \frac{1}{2}\lambda^{n} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad e_{2} &= \frac{1}{2}\lambda^{n} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad e_{3} &= \frac{1}{2}\lambda^{n} \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \\ e_{4} &= \frac{1}{2}\lambda^{n} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}, \quad e_{5} &= \frac{1}{2}\lambda^{n} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad [e_{1}(m), e_{2}(n)] = e_{3}(m+n), \\ [e_{1}(m), e_{3}(n)] &= e_{2}(m+n), \quad [e_{3}(m), e_{2}(n)] = e_{1}(m+n), \\ [e_{1}(m), e_{4}(n)] &= \frac{e_{4}(m+n)}{2}, \quad [e_{2}(m), e_{5}(n)] = \frac{e_{4}(m+n)}{2}, \quad [e_{3}(m), e_{5}(n)] = \frac{e_{4}(m+n)}{2}, \\ [e_{5}(m), e_{1}(n)] &= \frac{e_{5}(m+n)}{2}, \quad [e_{2}(m), e_{4}(n)] = \frac{e_{5}(m+n)}{2}, \quad [e_{4}(m), e_{3}(n)] = \frac{e_{5}(m+n)}{2}, \\ [e_{5}(m), e_{5}(n)]_{+} &= \frac{e_{2}(m+n)-e_{3}(m+n)}{2}, \quad [e_{4}(m), e_{4}(n)]_{+} = -\frac{e_{2}(m+n)+e_{3}(m+n)}{2}, \\ [e_{4}(m), e_{5}(n)]_{+} &= [e_{5}(m), e_{4}(n)]_{+} = \frac{e_{1}}{2}(m+n). \end{aligned}$$

Considering the super-isospectral problem as follows

$$\varphi_x = [U, \varphi], \quad U = e_1(-1) + u_1 e_2(0) + u_2 e_3(0) + u_3 e_4(0) + u_4 e_5(0),$$

$$\lambda_t = 0.$$
(7)

Taking

$$V = \sum_{m=0}^{\infty} (a_m e_1(m) + b_m e_2(m) + c_m e_3(m) + d_m e_4(m) + f_m e_5(m)).$$
(8)

Springer

Solving the stationary zero curvature equation $V_x = [U, V]$, give rise to

$$\begin{cases} a_{mx} = u_2 b_m - u_1 c_m + \frac{1}{2} u_4 d_m + \frac{1}{2} u_3 f_m, \\ b_{mx} = c_{m+1} - u_2 a_m - \frac{1}{2} u_3 d_m + \frac{1}{2} u_4 f_m, \\ c_{mx} = b_{m+1} - u_1 a_m - \frac{1}{2} u_3 d_m - \frac{1}{2} u_4 f_m, \\ d_{mx} = \frac{1}{2} d_{m+1} + \frac{1}{2} u_1 f_m + \frac{1}{2} u_2 f_m - \frac{1}{2} u_3 a_m - \frac{1}{2} u_4 b_m - \frac{1}{2} u_4 c_m, \\ f_{mx} = -\frac{1}{2} f_{m+1} + \frac{1}{2} u_1 d_m - \frac{1}{2} u_2 d_m - \frac{1}{2} u_3 b_m + \frac{1}{2} u_3 c_m + \frac{1}{2} u_4 a_m, \\ a_0 = \alpha = \text{const} \neq 0, \quad b_0 = c_0 = d_0 = f_0 = 0, \quad b_1 = \alpha u_1, \\ a_1 = \alpha \partial^{-1} u_3 u_4, \quad c_1 = \alpha u_2, \quad d_1 = \alpha u_3, \quad f_1 = \alpha u_4. \end{cases}$$

$$(9)$$

Denoting

$$V_{-}^{(n)} = \sum_{m=0}^{n} (a_m e_1(m-n) + b_m e_2(m-n) + c_m e_3(m-n) + d_m e_4(m-n) + f_m e_5(m-n)),$$
(10)
$$V_{+}^{(n)} = \lambda^{-n} V - V_{-}^{(n)}.$$

A direct calculation reads

$$-V_{-x}^{(n)} + [U, V_{-}^{(n)}] = c_{n+1}e_2(0) + b_{n+1}e_3(0) + \frac{1}{2}d_{n+1}e_4(0) - \frac{1}{2}f_{n+1}e_5(0).$$
(11)

Taking $V^{(n)} = V^{(n)}_{-}$, then the zero curvature equation

$$U_t - V_x^{(n)} + [U, V^{(n)}] = 0$$
(12)

admits the following superintegrable system

$$u_{t} = \begin{pmatrix} u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \end{pmatrix}_{t} = \begin{pmatrix} c_{n+1} \\ b_{n+1} \\ \frac{1}{2}d_{n+1} \\ -\frac{1}{2}f_{n+1} \end{pmatrix} = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & \frac{1}{2} & 0 \end{pmatrix} \begin{pmatrix} b_{n+1} \\ -c_{n+1} \\ -f_{n+1} \\ d_{n+1} \end{pmatrix} = JP_{n+1}.$$
(13)

From the recursion relations in (9), a recurrence operation L meets $P_{n+1} = LP_n$, where

$$L = \begin{pmatrix} u_1 \partial^{-1} u_2 & u_1 \partial^{-1} u_1 - \partial & -\frac{1}{2} u_4 - \frac{1}{2} u_1 \partial^{-1} u_3 & \frac{1}{2} u_3 + \frac{1}{2} u_1 \partial^{-1} u_4 \\ -\partial - u_2 \partial^{-1} u_2 & -u_2 \partial^{-1} u_1 & -\frac{1}{2} u_4 + \frac{1}{2} u_2 \partial^{-1} u_3 & -\frac{1}{2} u_3 - \frac{1}{2} u_2 \partial^{-1} u_4 \\ u_3 - u_4 \partial^{-1} u_2 & u_3 - u_4 \partial^{-1} u_1 & -2\partial + \frac{1}{2} u_4 \partial^{-1} u_3 & u_2 - u_1 - \frac{1}{2} u_4 \partial^{-1} u_4 \\ u_4 + u_3 \partial^{-1} u_2 & -u_3 + u_3 \partial^{-1} u_1 & u_2 + u_1 - \frac{1}{2} u_3 \partial^{-1} u_3 & 2\partial + \frac{1}{2} u_3 \partial^{-1} u_4 \end{pmatrix}.$$
(14)

3 Super-Hamiltonian Structure of the System (13)

Let a spectral matrix U be defined by

$$U = U(u,\lambda) = e_0(\lambda) + u_1 e_1(\lambda) + \dots + u_q e_q(\lambda), \quad u_i \in \mathcal{A}, E_i \in G, 1 \le i \le q,$$
(15)

where \mathcal{A} is a commutative superalgebra over R or C, G is a matrix loop superalgebra over \mathcal{A} with the nondegenerate Killing form, and $E_i \in G$, are \mathcal{A} linearly independent. If we define rank $(U) = \operatorname{rank}(\frac{\partial}{\partial x}) = \operatorname{const.}$ Assume that if two solutions $V_1, V_2 \in G$ of the stationary zero curvature equation $V_x = [U, V]$ possess the same rank, then they are \mathcal{A} linearly dependent of each other: $V_1 = \gamma V_2, \gamma = \operatorname{const.}$ From [13] we have the following two theorem

Theorem 1 (The supertrace identity) Let $U = U(u, \lambda) \in G$ be homogeneous in rank. Assume that the stationary zero curvature equation has a unique solution $V \in G$ of a fixed rank up to a constant multiplier. Then, there is a constant γ such that

$$\frac{\delta}{\delta u} \int \operatorname{str}(ad_V ad_{U_\lambda}) dx = \lambda^{-\gamma} \frac{\partial}{\partial \lambda} \lambda^{\gamma} \operatorname{str}(ad_V ad_{\partial U/\partial u})$$
(16)

holds for any solution $V \in G$ of stationary zero curvature equation, being homogeneous in rank.

Theorem 2 Let V be a solution to the stationary zero curvature equation. Then the constant in the supertrace identity is given by

$$\gamma = -\frac{\lambda}{2} \frac{d}{d\lambda} \ln|\operatorname{str}(ad_V ad_V)|, \qquad (17)$$

if str $(ad_V ad_V) \neq 0$.

Based on Lie superalgebra G in (5) and associated corresponding loop superalgebra \ddot{G} , a direct calculation gives

$$ad_{a} = \begin{pmatrix} 0 & a_{3} & -a_{2} & \frac{a_{5}}{2} & \frac{a_{4}}{2} \\ -a_{3} & 0 & a_{1} & -\frac{a_{4}}{2} & \frac{a_{5}}{2} \\ -a_{2} & a_{1} & 0 & -\frac{a_{4}}{2} & -\frac{a_{5}}{2} \\ -\frac{a_{4}}{2} & -\frac{a_{5}}{2} & -\frac{a_{5}}{2} & \frac{a_{1}}{2} & \frac{a_{2}+a_{3}}{2} \\ \frac{a_{5}}{2} & -\frac{a_{4}}{2} & \frac{a_{4}}{2} & \frac{a_{2}-a_{3}}{2} & -\frac{a_{1}}{2} \end{pmatrix}$$
(18)

for $a = a_1e_1 + a_2e_2 + a_3e_3 + a_4e_4 + a_5e_5 \in \tilde{G}$, where $ad_ab = [a, b], a, b \in G$, the bracket $[\cdot, \cdot]$ is the Lie superbracket of G. So, if we define the supertrace as follows

$$str(c) = c_{11} + c_{22} - c_{33}, \quad c = ab, \ a, b \in G,$$

$$str(P) = p_{11} + p_{22} + p_{33} - p_{44} - p_{55},$$

(19)

where $c = (c_{ij})_{3\times 3}$, $P = (p_{ij})_{5\times 5}$ and *ab* is the matrix product of *a* and *b*, then we have

$$\operatorname{str}(ad_a ad_b) = \operatorname{3str}(ab). \tag{20}$$

It is easy to compute that

$$\operatorname{str}(ad_V ad_{U_{\lambda}}) = -\frac{a}{2\lambda^2},$$

$$\operatorname{str}(ad_V ad_{\partial U/\partial u_1}) = \frac{3}{2}b, \qquad \operatorname{str}(ad_V ad_{\partial U/\partial u_2}) = -\frac{3}{2}c,$$

D Springer

$$\operatorname{str}(ad_{V}ad_{\partial U/\partial u_{3}}) = -\frac{3}{2}f, \qquad \operatorname{str}(ad_{V}ad_{\partial U/\partial u_{4}}) = \frac{3}{2}d.$$
(21)

According to the supertrace identity (16), we have

$$\frac{\delta}{\delta u} \int \left(-\frac{a}{2\lambda^2}\right) dx = \lambda^{-\gamma} \frac{\partial}{\partial \lambda} \lambda^{\gamma} \left(\frac{3}{2}b, -\frac{3}{2}c, -\frac{3}{2}f, \frac{3}{2}d\right)^T.$$
(22)

Comparing the coefficient of λ^n yields

$$\frac{\delta}{\delta u} \int \left(-\frac{1}{3} a_{n+2} \right) dx = (\gamma + n + 1) \left(b_{n+1}, -c_{n+1}, -f_{n+1}, d_{n+1} \right)^T.$$
(23)

Since str $(ad_V ad_V) = \frac{1}{2}\alpha^2 \neq 0$, we have $\gamma = 0$. Therefore,

$$P_{n+1} = \frac{\delta H_n}{\delta u}, \quad H_n = \int \left(-\frac{a_{n+2}}{3(n+1)}\right) dx, n \ge 0.$$
(24)

Hence, the system (13) has the following super-Hamiltonian structure

$$u_t = J P_{n+1} = J \frac{\delta H_n}{\delta u}, \quad H_n = \int \left(-\frac{a_{n+2}}{3(n+1)} \right) dx, n \ge 0.$$
 (25)

References

- Tu, G.: The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems. J. Math. Phys. 30(2), 330–338 (1989)
- Tu, G.: A trace identity and its application to the theory of discrete integrable systems. J. Phys. A: Math. Gen. 23, 3903–3922 (1990)
- Ma, W.: A new hierarchy of Liouville integrable generalized Hamiltonian equations and its reduction. Chin. J. Contemp. Math. 13(1), 79–89 (1992)
- 4. Tu, G., Ma, W.: An algebraic approach for extending Hamilton operators. J. Partial Differ. Equ. 3(2), 53–56 (1992)
- 5. Guo, F.: Subalgebras of the loop algebra and integrable Hamiltonian hierarchies of equations. Acta Math. Phys. Sin. **19**(5), 507–512 (1999)
- 6. Guo, F.: A hierarchy of integrable Hamiltonian equations. Acta Math. Appl. Sin. 23(2), 181–187 (2000)
- Zhang, Y.: A general Boite-Pempinelli-Tu hierarchy and its bi-Hamiltonian structure. Phys. Lett. A 317(3), 280–286 (2003)
- 8. Hu, X.: A powerful approach to generate new integrable systems. J. Phys. A 27, 2497–2514 (1994)
- 9. Zhang, Y., et al.: A subalgebra of loop algebra and its applications. Chin. Phys. 13(2), 132–138 (2004)
- Fan, E.: A Liouville integrable Hamiltonian system associated with a generalized Kaup-Newell spectral problem. Physica A 301, 105–113 (2001)
- Ma, W., Xu, X.: Positive and negative hierarchies of integrable lattice models associated with a Hamiltonian pair. Int. J. Theor. Phys. 43, 219–236 (2004)
- 12. Guo, F., Zhang, Y.: J. Phys. A: Math. Gen. 38, 8537-8548 (2005)
- Ma, W., He, J.-S., Qin, Z.-Y.: A supertrace identity and its applications to superintegrable systems. J. Math. Phys. 49, 033511 (2008)